National Repository of Grey Literature 29 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Photopolymerization study of composites
Baradzina, Lizaveta ; Petruš, Josef (referee) ; Poláček, Petr (advisor)
This bachelor thesis investigated the influence of ceramic nanofibers and particle filler on the curing kinetics of composite materials with dimethacrylate matrix. Changes in viscoelastic properties of materials during polymerization were also monitored. Within this work, four types of materials were prepared: particle composite, fiber composite, hybrid composite and pure matrix. Composite systems of different compositions were characterized by photorheology, differential photocalorimetry (DPC), and dynamic-mechanical analysis (DMA). The effect of light intensity and irradiation time on changes in the rheological properties of materials that occur during photopolymerization were investigated using photorheology. Based on the results of DPC analysis of the tested samples the dependencies of conversion on time and polymerization rate on conversion were created. The viscoelastic properties of the cured composites were determined by DMA analysis in a three-point arrangement.
Thermal Stability/Degradation of High Viscosity Dental Resins
Bystřický, Zdeněk ; Trautmann, Radoslav (referee) ; Poláček, Petr (advisor)
This diploma thesis deals with the influence of long term thermal load on the stability of high-viscous resins used for dental composites matrix. The process of polymerization was also investigated in connection with type and ratio of monomer units, mass content of the initiator system and the presence of nanosilica filler. Prepared resins were characterized by differential compensation photocalorimetry (DPC) and dynamic mechanical analysis (DMA). The dependence of the heat flow on time was measured by DPC. Based on the experimental data, the dependence of conversion on time and the dependence of polymerization rate on conversion were determined. Viscoelastic properties of the cured resins were determined by DMA. Experimentally measured data implies that by the influence of elevated temperature both the degree of conversion and the polymerization rate decreased. With a higher content of the initiator system incorporated in resin the decrease was more significant. Therefore, we can conclude that when the resin was exposed to the elevated temperature one of the components of the initiator system was inactivated. For the photopolymerized resins presence of two glass transition temperatures is typical due to the inhomogenous morphology of the cured resin. There are two types of domains with varying relative composition. However, after the degradation only one glass transition temperature was detected. That was caused by reducing the resin viscosity due to the increased temperature. Higher mobility of the initiator system molecules and monomers itself resulted in more homogenous structure of the cured resin. In case of elevated temperature exposed resins more significant decrease of the elastic modulus was observed. The curing process is considerably influenced by the type and ratio of the monomer units and by the presence of filler.
Functionalized hyper-cross-linked porous polyacetylenes
Havelková, Lucie
An atom-economic one-step chain-growth coordination homopolymerization providing high yields of functionalized hyper-cross-linked polyacetylenes with permanent micro/mesoporous texture and specific surface area up to 1062 m2 /g was introduced and optimized. Substituted 1,3-diethynylbenzenes served as monomers simultaneously providing functionalization and hyper-cross-linking of the networks. The homopolymerization was compatible with the heteroatom groups of the monomers and allowed to prepare polyacetylene networks with the wide spectrum of univalent functional groups: -F, -Cl, -Br, -NO2, -COOCH3, -CH2OH, -COOH and -CH=O decorating the aromatic segments of the networks in a high extent (7.87 mmol/g). A novel two-step synthesis of functionalized hyper-cross-linked polyacetylenes was introduced combining chain-growth coordination polymerization of acetylenic monomers and covalent templating using acetal and Schiff base protecting groups. By postpolymerization hydrolytic removal of the protecting segments from the primary networks, the networks with a high content (up to 9.61 mmol/g) of univalent functional groups -CH2OH, -CH=O and -NH2 were prepared. These groups were placed either on the cross-linking or linear (aromatic and aliphatic) network segments, even in the vicinity of the main...
Functionalized hyper-cross-linked porous polyacetylenes
Havelková, Lucie ; Sedláček, Jan (advisor) ; Brožek, Jiří (referee) ; Balcar, Hynek (referee)
An atom-economic one-step chain-growth coordination homopolymerization providing high yields of functionalized hyper-cross-linked polyacetylenes with permanent micro/mesoporous texture and specific surface area up to 1062 m2 /g was introduced and optimized. Substituted 1,3-diethynylbenzenes served as monomers simultaneously providing functionalization and hyper-cross-linking of the networks. The homopolymerization was compatible with the heteroatom groups of the monomers and allowed to prepare polyacetylene networks with the wide spectrum of univalent functional groups: -F, -Cl, -Br, -NO2, -COOCH3, -CH2OH, -COOH and -CH=O decorating the aromatic segments of the networks in a high extent (7.87 mmol/g). A novel two-step synthesis of functionalized hyper-cross-linked polyacetylenes was introduced combining chain-growth coordination polymerization of acetylenic monomers and covalent templating using acetal and Schiff base protecting groups. By postpolymerization hydrolytic removal of the protecting segments from the primary networks, the networks with a high content (up to 9.61 mmol/g) of univalent functional groups -CH2OH, -CH=O and -NH2 were prepared. These groups were placed either on the cross-linking or linear (aromatic and aliphatic) network segments, even in the vicinity of the main...
Porous polymer networks prepared from ethynylpyridines
Titlová, Štěpánka ; Sedláček, Jan (advisor) ; Sedláček, Ondřej (referee)
Series of new micro/mesoporous polymer networks with high content of pyridine segments was prepared. For the preparation were used ethynylpyridine type of monomers which were successfully homopolymerized and copolymerized with hydrocarbon diethynylarenes by chain-growth coordination polymerization catalyzed with [Rh(NBD)acac] complex. Polymerizations provided polyacetylene networks with main chains densely cross- linked by pyridine or arylene links. Prepared pyridine networks showed specific surface area SBET from 308 m2 /g to 923 m2 /g and variable content of pyridine segments in an interval from 3,27 mmol/g to 7,86 mmol/g. In networks, pyridine segments made part of interchain links or side groups. Networks with pyridine segments were successfully quaternized by heterogeneous postpolymerization reaction with bromoethane to form well covalently defined networks containing N-ethylpyridinium segments. Quaternized networks containing pyridinim segments in amount from 2,41 mmol/g to 4,24 mmol/g had preserved micro/mesoporous texture with values of SBET from 331 m2 /g to 592 m2 /g. Polyacetylene networks with N-ethylpyridinium segments were prepared also by catalyst-free (spontaneous) quaternization polymerization of diethylpyridines. These networks were worse covalently defined and had proved lower...
Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization
Slováková, Eva ; Sedláček, Jan (advisor) ; Merna, Jan (referee) ; Červený, Libor (referee)
4 ABSTRACT The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated...
Functionalized microporous polymer networks prepared from ethynylarenes
Stahlová, Sabina ; Sedláček, Jan (advisor) ; Etrych, Tomáš (referee) ; Červený, Libor (referee)
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
Characterization of poly(1,4-diethynylbenzene) by IGC method
Petrášová, Sabina ; Sedláček, Jan (advisor) ; Pacáková, Věra (referee)
Poly(1,4-diethynylbenzene) ( -conjugated polymer) was prepared as an insoluble polymer network via chain coordination polymerization of 1,4-diethynylbezene catalyzed with [Rh(NBD)acac] complex. Thermodynamic properties and acid-base characteristics of the prepared poly(1,4-diethynylbenzene) were studied by means of Inverse Gas Chromatography (IGC) in the temperature range 80-100 řC. Retention data of selected testing substances were used to determine the Gibbs energy of sorption, the sorption enthalpy and their acid-base and disperse parts as well as the disperse contribution to the surface energy and parameters of KA, KD, ANHPS and DNHPS quantifying the acid-base character of the studied polymer. The results showed that poly(1,4-diethynylbenzene) interacted more efficiently with Lewis bases than with Lewis acids. The values of experimental sorption enthalpy were used for the determination of the parameters KA and KD. Values of these parameters classify poly(1,4-diethynylbenzene) as the material with a slightly acid character. This conclusion is further supported by the results of H. P. Schreiber method based on the application of ANHPS and DNHPS parameters for the evaluation of the acid-base properties of the material. The infrared spectroscopy proved that poly(1,4-diethynylbenzene) contained...

National Repository of Grey Literature : 29 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.